Published in

MDPI, Remote Sensing, 11(13), p. 2081, 2021

DOI: 10.3390/rs13112081

Links

Tools

Export citation

Search in Google Scholar

Validation of GPM Rainfall and Drop Size Distribution Products through Disdrometers in Italy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The high relevance of satellites for collecting information regarding precipitation at global scale implies the need of a continuous validation of satellite products to ensure good data quality over time and to provide feedback for updating and improving retrieval algorithms. However, validating satellite products using measurements collected by sensors at ground is still a challenging task. To date, the Dual-frequency Precipitation Radar (DPR) aboard the Core Satellite of the Global Precipitation Measurement (GPM) mission is the only active sensor able to provide, at global scale, vertical profiles of rainfall rate, radar reflectivity, and Drop Size Distribution (DSD) parameters from space. In this study, we compare near surface GPM retrievals with long time series of measurements collected by seven laser disdrometers in Italy since the launch of the GPM mission. The comparison shows limited differences in the performances of the different GPM algorithms, be they dual- or single-frequency, although in most cases, the dual-frequency algorithms present the better performances. Furthermore, the agreement between satellite and ground-based estimates depends on the considered precipitation variable. The agreement is very promising for rain rate, reflectivity factor, and the mass-weighted mean diameter (Dm), while the satellite retrievals need to be improved for the normalized gamma DSD intercept parameter (Nw).