Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Plant Biology, 6(24), p. 950-959, 2022

DOI: 10.1111/plb.13443

Links

Tools

Export citation

Search in Google Scholar

Negative effects of winter and spring warming on the regeneration of forest spring geophytes

Journal article published in 2022 by P. Vangansbeke ORCID, P. Sanczuk ORCID, S. Govaert ORCID, E. De Lombaerde, P. De Frenne ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The climate is changing rapidly, provoking species to shift their ranges poleward and upslope. We currently lack a mechanistic understanding of the effect of warmer temperatures on plants, especially for seasonally distinct patterns. Spring geophytes are emblematic forest plants that have a short aboveground lifecycle in the first half of the year and are thus particularly sensitive to winter and spring warming. We set up a warming experiment with separate and combined winter and spring warming on seedlings of three European spring geophytes: Anemone nemorosa, Hyacinthoides non‐scripta and Ornithogalum pyrenaicum. Seedling emergence and plant height were recorded at the end of winter and spring treatment, when also biomass of the root, shoot and storage organ was determined. We found negative effects of combined winter and spring warming on seedling emergence. The weight of the storage organ proved to be the best indicator of seedling performance and was negatively affected by separate winter warming in Anemone and by spring warming in Hyacinthoides. Successful seedling emergence was jeopardized by the absence of a cold period, while seedling performance seemed to be negatively influenced directly by higher temperatures through a phenological shift. Our findings confirm that warmer winter and spring temperatures could hamper regeneration of spring geophytes.