Published in

Wiley Open Access, Ecosphere, 5(14), 2023

DOI: 10.1002/ecs2.4526

Links

Tools

Export citation

Search in Google Scholar

The impact of ice storms on mycorrhizal fungi varies by season and mycorrhizal type in a hardwood forest

Journal article published in 2023 by C. E. Yancey, S. M. Juice ORCID, Aimee T. Classen ORCID, L. Rustad, E. Carol Adair ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractExtreme weather events, such as ice storms, are increasing and have potentially large impacts on forests, including belowground structures such as fine roots and mycorrhizal fungi. Many forest trees rely on the mutualistic relationship between mycorrhizal fungi and plants; a relationship that, when disrupted, can negatively impact tree net primary productivity. We took advantage of a large‐scale ice storm manipulation in the northeastern United States to test the hypothesis that increasing ice storm intensity and frequency would reduce ectomycorrhizal fungal root tips per unit root length and arbuscular mycorrhizal fungal structures per unit root length, hereafter colonization. We found that ice storm intensity reduced spring ectomycorrhizal fungal and arbuscular mycorrhizal fungal colonization. However, these patterns changed in the fall, where ice storm intensity still reduced ectomycorrhizal fungal root tips, but arbuscular mycorrhizal fungal colonization was higher in ice storm treatments than controls. The amount of ectomycorrhizal fungal root tips and arbuscular mycorrhizal fungal colonization differed seasonally: ectomycorrhizal fungal root tips were 1.7× higher in the spring than in the fall, while arbuscular mycorrhizal fungal colonization was 3× higher in the fall than in the spring. Our results indicate that mycorrhizal fungal colonization responses to ice storm severity vary temporally and by mycorrhizal fungal type. Further, arbuscular mycorrhizal fungi may recover from ice storms relatively quickly, potentially aiding forests in their recovery, whereas ice storms may have a long lasting impact on ectomycorrhizal fungi.