Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(521), p. 1184-1199, 2022

DOI: 10.1093/mnras/stac2786

Links

Tools

Export citation

Search in Google Scholar

Robust sampling for weak lensing and clustering analyses with the Dark Energy Survey

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Recent cosmological analyses rely on the ability to accurately sample from high-dimensional posterior distributions. A variety of algorithms have been applied in the field, but justification of the particular sampler choice and settings is often lacking. Here, we investigate three such samplers to motivate and validate the algorithm and settings used for the Dark Energy Survey (DES) analyses of the first 3 yr (Y3) of data from combined measurements of weak lensing and galaxy clustering. We employ the full DES Year 1 likelihood alongside a much faster approximate likelihood, which enables us to assess the outcomes from each sampler choice and demonstrate the robustness of our full results. We find that the ellipsoidal nested sampling algorithm multinest reports inconsistent estimates of the Bayesian evidence and somewhat narrower parameter credible intervals than the sliced nested sampling implemented in polychord. We compare the findings from multinest and polychord with parameter inference from the Metropolis–Hastings algorithm, finding good agreement. We determine that polychord provides a good balance of speed and robustness for posterior and evidence estimation, and recommend different settings for testing purposes and final chains for analyses with DES Y3 data. Our methodology can readily be reproduced to obtain suitable sampler settings for future surveys.