Published in

American Astronomical Society, Astrophysical Journal, 2(949), p. 76, 2023

DOI: 10.3847/1538-4357/ac74bb

Links

Tools

Export citation

Search in Google Scholar

Constraints on the Cosmic Expansion History from GWTC–3

Journal article published in 2023 by D. Wong ORCID, I. Chun Fung Wong, I. C. F. Wong, J. S. A. von Wrangel, I. Tosta e. Melo ORCID, P. F. de Alarc'on, M. de Laurentis, F. de Lillo, N. de Lillo, F. de Matteis, R. de Pietri, C. de Rossi, R. de Simone, L. di Fiore, C. di Fronzo and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H 0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M , followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H 0 = 68 − 8 + 12 km s − 1 Mpc − 1 (68% credible interval) when combined with the H 0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H 0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event’s potential hosts. Assuming a fixed BBH population, we estimate a value of H 0 = 68 − 6 + 8 km s − 1 Mpc − 1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H 0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H 0) is the well-localized event GW190814.