Dissemin is shutting down on January 1st, 2025

Published in

arXiv, 2022

DOI: 10.48550/arxiv.2210.13717

American Astronomical Society, Astrophysical Journal Supplement, 2(267), p. 21, 2023

DOI: 10.3847/1538-4365/acda2a

Links

Tools

Export citation

Search in Google Scholar

An Unbiased Method of Measuring the Ratio of Two Data Sets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Abstract In certain cases of astronomical data analysis, the meaningful physical quantity to extract is the ratio R between two data sets. Examples include the lensing ratio, the interloper rate in spectroscopic redshift samples, and the decay rate of gravitational potential and E G to test gravity. However, simply taking the ratio of the two data sets is biased, since it renders (even statistical) errors in the denominator into systematic errors in R. Furthermore, it is not optimal in minimizing statistical errors of R. Based on Bayesian analysis and the usual assumption of Gaussian error in the data, we derive an analytical expression of the posterior probability density function P(R). This result enables fast and unbiased R measurement, with minimal statistical errors. Furthermore, it relies on no underlying model other than the proportionality relation between the two data sets. Even more generally, it applies to cases where the proportionality relation holds for the underlying physics/statistics instead of the two data sets directly. It also applies to the case of multiple ratios (R → R = (R 1, R 2, ⋯ )). We take the lensing ratio as an example to demonstrate our method. We take lenses as DESI imaging survey galaxies, and sources as DECaLS cosmic shear and Planck cosmic microwave background (CMB) lensing. We restrict the analysis to the ratio between CMB lensing and cosmic shear. The resulting P(R) values, for multiple lens–shear pairs, are all nearly Gaussian. The signal-to-noise ratio of measured R ranges from 4.9 to 8.4. We perform several tests to verify the robustness of the above result.