Published in

American Astronomical Society, Astrophysical Journal, 2(927), p. 158, 2022

DOI: 10.3847/1538-4357/ac4caf

Links

Tools

Export citation

Search in Google Scholar

The Pulsating Helium-atmosphere White Dwarfs. I. New DBVs from the Sloan Digital Sky Survey

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present a dedicated search for new pulsating helium-atmosphere (DBV) white dwarfs from the Sloan Digital Sky Survey using the McDonald 2.1 m Otto Struve Telescope. In total we observed 55 DB and DBA white dwarfs with spectroscopic temperatures between 19,000 and 35,000 K. We find 19 new DBVs and place upper limits on variability for the remaining 36 objects. In combination with previously known DBVs, we use these objects to provide an update to the empirical extent of the DB instability strip. With our sample of new DBVs, the red edge is better constrained, as we nearly double the number of DBVs known between 20,000 and 24,000 K. We do not find any new DBVs hotter than PG 0112+104, the current hottest DBV is at T eff ≈ 31,000 K, but do find pulsations in four DBVs with temperatures between 27,000 and 30,000 K, improving empirical constraints on the poorly defined blue edge. We investigate the ensemble pulsation properties of all currently known DBVs, finding that the weighted mean period and total pulsation power exhibit trends with effective temperature that are qualitatively similar to the pulsating hydrogen-atmosphere white dwarfs.