Springer, Boundary-Layer Meteorology, 3(186), p. 475-503, 2023
DOI: 10.1007/s10546-022-00769-8
Full text: Unavailable
AbstractTurbulence is the key process transporting material and energy in the atmosphere. Furthermore, turbulence causes concentration fluctuations, influencing different atmospheric processes such as deposition, chemical reactions, formation of low-volatile vapours, formation of new aerosol particles and their growth in the atmosphere, and the effect of aerosol particles on boundary-layer meteorology. In order to analyse the connections, interactions and feedbacks relating those different processes require a deep understanding of atmospheric turbulence mechanisms, atmospheric chemistry and aerosol dynamics. All these processes will further influence air pollution and climate. The better we understand these processes and their interactions and associated feedback, the more effectively we can mitigate air pollution as well as mitigate climate forcers and adapt to climate change. We present several aspects on the importance of turbulence including how turbulence is crucial for atmospheric phenomena and feedbacks in different environments. Furthermore, we discuss how boundary-layer dynamics links to aerosols and air pollution. Here, we present also a roadmap from deep understanding to practical solutions.