Published in

American Geophysical Union, Geophysical Research Letters, 6(50), 2023

DOI: 10.1029/2022gl102594

Links

Tools

Export citation

Search in Google Scholar

Atmospheric Input and Seasonal Inventory of Dissolved Iron in the Sargasso Sea: Implications for Iron Dynamics in Surface Waters of the Subtropical Ocean

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractConstraining the role of dust deposition in regulating the concentration of the essential micronutrient iron in surface ocean waters requires knowledge of the flux of seawater‐soluble iron in aerosols and the replacement time of dissolved iron (DFe) in the euphotic zone. Here we estimate these quantities using seasonally resolved DFe data from the Bermuda Atlantic Time‐series Study region and weekly‐scale measurements of iron in aerosols and rain from Bermuda during 2019. In response to seasonal changes in vertical mixing, primary production and dust deposition, surface DFe concentrations vary from ∼0.2 nM in early spring to >1 nM in late summer, with DFe inventories ranging from ∼30 to ∼80 μmol/m2, respectively, over the upper 200 m. Assuming the upper ocean approximates steady state for DFe on an annual basis, our aerosol and rainwater data require a mean euphotic‐zone residence time of ∼0.8–1.9 years for DFe with respect to aeolian input.