Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Statistics in Medicine, 3(41), p. 517-542, 2021

DOI: 10.1002/sim.9257

Links

Tools

Export citation

Search in Google Scholar

A conditional autoregressive model for genetic association analysis accounting for genetic heterogeneity

Journal article published in 2021 by Xiaoxi Shen, Yalu Wen ORCID, Yuehua Cui ORCID, Qing Lu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractConverging evidence from genetic studies and population genetics theory suggest that complex diseases are characterized by remarkable genetic heterogeneity, and individual rare mutations with different effects could collectively play an important role in human diseases. Many existing statistical models for association analysis assume homogeneous effects of genetic variants across all individuals, and could be subject to power loss in the presence of genetic heterogeneity. To consider possible heterogeneous genetic effects among individuals, we propose a conditional autoregressive model. In the proposed method, the genetic effect is considered as a random effect and a score test is developed to test the variance component of genetic random effect. Through simulations, we compare the type I error and power performance of the proposed method with those of the generalized genetic random field and the sequence kernel association test methods under different disease scenarios. We find that our method outperforms the other two methods when (i) the rare variants have the major contribution to the disease, or (ii) the genetic effects vary in different individuals or subgroups of individuals. Finally, we illustrate the new method by applying it to the whole genome sequencing data from the Alzheimer's Disease Neuroimaging Initiative.