Published in

American Astronomical Society, Astrophysical Journal, 2(912), p. 125, 2021

DOI: 10.3847/1538-4357/abee68

Links

Tools

Export citation

Search in Google Scholar

I Spy Transits and Pulsations: Empirical Variability in White Dwarfs Using Gaia and the Zwicky Transient Facility

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present a novel method to detect variable astrophysical objects and transient phenomena using anomalous excess scatter in repeated measurements from public catalogs of Gaia DR2 and Zwicky Transient Facility (ZTF) DR3 photometry. We first provide a generalized, all-sky proxy for variability using only Gaia DR2 photometry, calibrated to white dwarf stars. To ensure more robust candidate detection, we further employ a method combining Gaia with ZTF photometry and alerts. To demonstrate its efficacy, we apply this latter technique to a sample of roughly 12,100 white dwarfs within 200 pc centered on the ZZ Ceti instability strip, where hydrogen-atmosphere white dwarfs are known to pulsate. By inspecting the top 1% of the samples ranked by these methods, we demonstrate that both the Gaia-only and ZTF-informed techniques are highly effective at identifying known and new variable white dwarfs, which we verify using follow-up, high-speed photometry. We confirm variability in all 33 out of 33 (100%) observed white dwarfs within our top 1% highest-ranked candidates, both inside and outside the ZZ Ceti instability strip. In addition to dozens of new pulsating white dwarfs, we also identify five white dwarfs highly likely to show transiting planetary debris; if confirmed, these systems would more than triple the number of white dwarfs known to host transiting debris.