Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Plants, 16(12), p. 2932, 2023

DOI: 10.3390/plants12162932

Links

Tools

Export citation

Search in Google Scholar

The Expression of Triticum aestivum Cysteine-Rich Receptor-like Protein Kinase Genes during Leaf Rust Fungal Infection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Understanding the role of cysteine-rich receptor-like kinases (CRKs) in plant defense mechanisms is crucial for enhancing wheat resistance to leaf rust fungus infection. Here, we identified and verified 164 members of the CRK gene family using the Triticum aestivum reference version 2 collected from the international wheat genome sequencing consortium (IWGSC). The proteins exhibited characteristic features of CRKs, including the presence of signal peptides, cysteine-rich/stress antifungal/DUF26 domains, transmembrane domains, and Pkinase domains. Phylogenetic analysis revealed extensive diversification within the wheat CRK gene family, indicating the development of distinct specific functional roles to wheat plants. When studying the expression of the CRK gene family in near-isogenic lines (NILs) carrying Lr57- and Lr14a-resistant genes, Puccinia triticina, the causal agent of leaf rust fungus, triggered temporal gene expression dynamics. The upregulation of specific CRK genes in the resistant interaction indicated their potential role in enhancing wheat resistance to leaf rust, while contrasting gene expression patterns in the susceptible interaction highlighted potential susceptibility associated CRK genes. The study uncovered certain CRK genes that exhibited expression upregulation upon leaf rust infection and the Lr14a-resistant gene. The findings suggest that targeting CRKs may present a promising strategy for improving wheat resistance to rust diseases.