Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 17(22), p. 11239-11253, 2022

DOI: 10.5194/acp-22-11239-2022

Links

Tools

Export citation

Search in Google Scholar

Chemical evolution of secondary organic aerosol tracers during high-PM<sub>2.5</sub> episodes at a suburban site in Hong Kong over 4 months of continuous measurement

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Secondary organic aerosol (SOA) makes a sizable contribution to fine-particulate-matter (PM2.5) pollution, especially during high-PM episodes. Past studies of SOA evolution at the episode scale mainly rely on measurements of bulk SOA mass, with few studies probing individual SOA molecular tracers. In this study, we continuously monitored (at a bi-hourly resolution) SOA tracers specific to a few common volatile organic compound (VOC) precursors at a suburban site in Hong Kong for a 4-month period from the end of August to December 2020. The SOA molecules include tracers for SOA derived from biomass burning (BB) emissions, monoaromatics, naphthalene/methylnaphthalenes, and three biogenic VOCs (isoprene, monoterpene, and sesquiterpene). Generally, the SOA tracers showed regional characteristics for both anthropogenic and biogenic SOA as well as for the BB-derived SOA. This work focused on the seasonal variation and evolution characteristics of SOA tracers during 11 city-wide PM2.5 episodes, which are defined as periods with PM2.5 concentrations exceeding 35 µg m−3 at 3 or more of the 15 general air quality monitoring stations cross the city. Mass increment ratios (MIR), calculated as the ratio of the mass concentration prior to an episode to that during an episode, were examined for individual species during each episode. During most episodes, the SOA tracer concentrations were enhanced (i.e. MIR >1), and the maximum MIR values were in the range of 5.5–11.0 for SOA tracers of different precursors. Episodes on summer and fall days showed notably larger MIR values than those falling on winter days, indicating the higher importance of SOA to the formation of summer/fall PM2.5 episodes. Simultaneous monitoring of six tracers for isoprene SOA revealed the dominance of the low-NOx pathway in forming isoprene SOA in our study region. The multiple monoterpene SOA products suggested fresher SOA in winter, evidenced by the increased presence of the early-generation products. Thus, the current study has shown by example the precursor-specific SOA chemical evolution characteristics during PM2.5 episodes in different seasons. This study also suggests the necessity to apply high-time-resolution organic marker measurement at multiple sites in order to fully capture the spatial heterogeneity of haze pollution at the city scale.