Published in

Wiley, Functional Ecology, 2(36), p. 341-355, 2021

DOI: 10.1111/1365-2435.13971

Links

Tools

Export citation

Search in Google Scholar

Variation of non‐structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Tropical tree species span a range of life‐history strategies within a fast–slow continuum. The position of a species within this continuum is thought to reflect a negative relationship between growth and storage, with fast‐growing species allocating more carbon to growth and slow‐growing species investing more in storage. For tropical species, the relationship between storage and life‐history strategies has been largely studied on seedlings and less so in adult trees. We evaluated how stored non‐structural carbohydrates (NSC) vary across adult trees spanning the fast–slow continuum in the Peruvian Amazon by: (a) analysing whole‐tree NSC in two species of contrasting growth and (b) investigating the relationships with key life‐history traits across a broader set of species. Our results are consistent with a growth–storage trade‐off. The analysis of whole‐tree NSC revealed that the slow‐growing Eschweilera coriacea stored about 2.7 times as much NSC as the fast‐growing Bixa arborea due to markedly higher storage in woody stems and roots. B. arborea also had higher seasonality in NSC, reflecting its strong seasonality in stem growth. Across a range of species, stem starch was negatively related to species growth rate and positively related to wood density. Given the role of NSC in mediating plants' response to stress, our results suggest that slow‐growing species with greater storage reserves may be more resilient to drought than fast‐growing species.