Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 13(134), 2023

DOI: 10.1063/5.0162101

Links

Tools

Export citation

Search in Google Scholar

Detection of 3–300 MHz electric fields using Floquet sideband gaps by “Rabi matching” dressed Rydberg atoms

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Radio frequencies in high-frequency (HF) and very high-frequency (VHF) bands (3–300 MHz) are challenging for Rydberg atom-based detection schemes, as resonant detection requires exciting atoms to extremely high energy states. We demonstrate a method for detecting and measuring radio frequency carriers in these bands via a controlled Autler–Townes line splitting. Using a resonant 18 GHz field, the absorption signal from Townes–Merritt sidebands created by a relatively low-frequency, non-resonant field can be enhanced. Notably, this technique uses a measurement of optical frequency separation of an avoided crossing to determine the amplitude of a non-resonant field. This technique also provides frequency-selective measurements of electric fields in the hundreds of MHz range with resolution of order 10 MHz. To show this, we demonstrate amplitude-modulated signal transduction on a MHz-range carrier. We further demonstrate reception of multiple tones simultaneously, creating a Rydberg “spectrum analyzer.”