Cambridge University Press, Proceedings of the International Astronomical Union, S372(18), p. 88-90, 2022
DOI: 10.1017/s1743921322005026
Full text: Unavailable
AbstractSolar flares are an explosive manifestation of the complex magnetic structuring of active regions in the solar atmosphere. The photospheric magnetic field is found to change rapidly, abruptly, and significantly during flaring events. Previous studies are mainly based on line-of-sight or low-cadence data. In this work, we focus on the temporal and spatial evolution of the permanent changes in the magnetic field of solar flares from high-cadence vector data (135 seconds) of the imaging system (dopplergrams and magnetograms) of the SDO/HMI instrument. The highly energetic events under analysis occurred during the solar cycle 24, covering low and high energy ranges, according to GOES classification. This investigation also stands as a crucial input for the characterization and understanding of sunquakes.