Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2(512), p. 1814-1828, 2022

DOI: 10.1093/mnras/stac559

Links

Tools

Export citation

Search in Google Scholar

Investigating the nature of the ultraluminous X-ray sources in the galaxy NGC 925

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Variability is a powerful tool to investigate properties of X-ray binaries (XRB), in particular for Ultraluminous X-ray sources (ULXs) that are mainly detected in the X-ray band. For most ULXs the nature of the accretor is unknown, although a few ULXs have been confirmed to be accreting at super-Eddington rates on to a neutron star (NS). Monitoring these sources is particularly useful both to detect transients and to derive periodicities, linked to orbital and super-orbital modulations. Here, we present the results of our monitoring campaign of the galaxy NGC 925, performed with the Neil Gehrels Swift Observatory. We also include archival and literature data obtained with Chandra, XMM–Newton, and NuSTAR. We have studied spectra, light curves, and variability properties on days to months time-scales. All the three ULXs detected in this galaxy show flux variability. ULX-1 is one of the most luminous ULXs known, since only 10 per cent of the ULXs exceed a luminosity of ∼5 × 1040 erg s−1, but despite its high flux variability we found only weak spectral variability. We classify it as in a hard ultraluminous regime of super-Eddington accretion. ULX-2 and ULX-3 are less luminous but also variable in flux and possibly also in spectral shape. We classify them as in between the hard and the soft ultraluminous regimes. ULX-3 is a transient source: by applying a Lomb–Scargle algorithm, we derive a periodicity of ∼126 d, which could be associated with an orbital or superorbital origin.