Published in

MDPI, Mathematical and Computational Applications, 2(27), p. 31, 2022

DOI: 10.3390/mca27020031

Links

Tools

Export citation

Search in Google Scholar

Benchmarking Regridding Libraries Used in Earth System Modelling

Journal article published in 2022 by Sophie Valcke ORCID, Andrea Piacentini, Gabriel Jonville
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Components of Earth system models (ESMs) usually use different numerical grids because of the different environments they represent. Therefore, a coupling field sent by a source model has to be regridded to be used by a target model. The regridding has to be accurate and, in some cases, conservative, in order to ensure the consistency of the coupled model. Here, we present work done to benchmark the quality of four regridding libraries currently used in ESMs, i.e., SCRIP, YAC, ESMF and XIOS. We evaluated five regridding algorithms with four different analytical functions for different combinations of six grids used in real ocean or atmosphere models. Four analytical functions were used to define the coupling fields to be regridded. This benchmark calculated some of the metrics proposed by the CANGA project, including the mean, maximum, RMS misfit, and global conservation. The results show that, besides a few very specific cases that present anomalous values, the regridding functionality in YAC, ESMF and XIOS can be considered of high quality and do not present the specific problems observed for the conservative SCRIP remapping. The evaluation of the computing performance of those libraries is not included in the current work but is planned to be performed in the coming months. This exercise shows that benchmarking can be a great opportunity to favour interactions between users and developers of regridding libraries.