Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(12), 2022

DOI: 10.1038/s41598-022-23090-3

Links

Tools

Export citation

Search in Google Scholar

Data-driven comorbidity analysis of 100 common disorders reveals patient subgroups with differing mortality risks and laboratory correlates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe populational heterogeneity of a disease, in part due to comorbidity, poses several complexities. Individual comorbidity profiles, on the other hand, contain useful information to refine phenotyping, prognostication, and risk assessment, and they provide clues to underlying biology. Nevertheless, the spectrum and the implications of the diagnosis profiles remain largely uncharted. Here we mapped comorbidity patterns in 100 common diseases using 4-year retrospective data from 526,779 patients and developed an online tool to visualize the results. Our analysis exposed disease-specific patient subgroups with distinctive diagnosis patterns, survival functions, and laboratory correlates. Computational modeling and real-world data shed light on the structure, variation, and relevance of populational comorbidity patterns, paving the way for improved diagnostics, risk assessment, and individualization of care. Variation in outcomes and biological correlates of a disease emphasizes the importance of evaluating the generalizability of current treatment strategies, as well as considering the limitations that selective inclusion criteria pose on clinical trials.