Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Data, 1(8), 2021

DOI: 10.1038/s41597-021-00973-0

Links

Tools

Export citation

Search in Google Scholar

Gridded daily weather data for North America with comprehensive uncertainty quantification

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAccess to daily high-resolution gridded surface weather data based on direct observations and over long time periods is essential for many studies and applications including vegetation, wildlife, soil health, hydrological modelling, and as driver data in Earth system models. We present Daymet V4, a 40-year daily meteorological dataset on a 1 km grid for North America, Hawaii, and Puerto Rico, providing temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day length. The dataset includes an objective quantification of uncertainty based on strict cross-validation analysis for temperature and precipitation results. The dataset represents several improvements from a previous version, and this data descriptor provides complete documentation for updated methods. Improvements include: reductions in the timing bias of input reporting weather station measurements; improvement to the three-dimensional regression model techniques in the core algorithm; and a novel approach to handling high elevation temperature measurement biases. We show cross-validation analyses with the underlying weather station data to demonstrate the technical validity of new dataset generation methods, and to quantify improved accuracy.