Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 12(13), p. 6912, 2023

DOI: 10.3390/app13126912

Links

Tools

Export citation

Search in Google Scholar

Eco-Friendly Synthesis of Silver Nanoparticles by Nitrosalsola vermiculata to Promote Skin Wound Healing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Eco-friendly synthesis of silver nanoparticles (SN) by using a naturally occurring plant, such as Nitrosalsola (Salsola) vermiculata (SV), could be a novel way for appropriate wound healing. AgNO3 was reduced by SV to produce safe SN (SN-SV) extract and hasten the wound healing process. The obtained SN-SV were characterized by size, charge, wavelength, and surface morphology. The optimized formulation was dispersed in O/W cosmetic cream. Then, it was characterized in terms of pH, viscosity, homogeneity, and permeability. The ex vivo and in vivo studies have been conducted in a rat animal model to assess the potential of SN-SV cream on skin tissue regeneration. A skin punch biopsy was obtained to investigate the histopathological (HP) changes in the skin lesions of all rats by the H&E staining and PCNA immunostaining methods. The skin wounds in all subgroups were examined on days 5, 11, and 15 to analyze the effectiveness of SN-SV cream for treating surgical skin wounds. The prepared SN-SV had a particle size of 37.32 ± 1.686 nm, a charge of −1.4 ± 0.7 mV, non-aggregated SN-SV, and a λmax of 396.46 nm. The formed SN-SV cream showed a pH near the skin’s pH, with suitable viscosity and homogeneity and an apparent permeability of 0.009 ± 0.001. The HP changes in the SN-SV subgroups revealed a substantial reduction in wound size and improvement in wound granulation tissue formation and epidermal re-epithelialization (proliferation) compared to the healing in the SN subgroups. The current work revealed that SN-SV could be a novel skin-wound-healing agent with a practical application as a wound-healing platform.