Published in

IOP Publishing, The Planetary Science Journal, 8(3), p. 189, 2022

DOI: 10.3847/psj/ac7e4f

Links

Tools

Export citation

Search in Google Scholar

Physical Characterization of 2015 JD<sub>1</sub>: A Possibly Inhomogeneous Near-Earth Asteroid

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The surfaces of airless bodies such as asteroids are exposed to many phenomena that can alter their physical properties. Bennu, the target of the OSIRIS-REx mission, has demonstrated how complex the surface of a small body can be. In 2019 November, the potentially hazardous asteroid 2015 JD1 experienced a close approach of 0.033 1 au from the Earth. We present results of the physical characterization of 2015 JD1 based on ground-based radar, spectroscopy, and photometric observations acquired during 2019 November. Radar polarimetry measurements from the Arecibo Observatory indicate a morphologically complex surface. The delay-Doppler images reveal a contact binary asteroid with an estimated visible extent of ∼150 m. Our observations suggest that 2015 JD1 is an E-type asteroid with a surface composition similar to aubrites, a class of differentiated enstatite meteorites. The dynamical properties of 2015 JD1 suggest that it came from the ν 6 resonance with Jupiter, and spectral comparison with major E-type bodies suggests that it may have been derived from a parental body similar to the progenitor of the E-type (64) Angelina. Significantly, we find rotational spectral variation across the surface of 2015 JD1 from the red to blue spectral slope. Our compositional analysis suggests that the spectral slope variation could be due to the lack of iron and sulfides in one area of the surface of 2015 JD1 and/or differences in grain sizes.