Published in

American Geophysical Union, Global Biogeochemical Cycles, 9(36), 2022

DOI: 10.1029/2021gb007220

Links

Tools

Export citation

Search in Google Scholar

Remote‐Sensing Derived Trends in Gross Primary Production Explain Increases in the CO<sub>2</sub> Seasonal Cycle Amplitude

Journal article published in 2022 by Liyin He ORCID, Brendan Byrne ORCID, Yi Yin ORCID, Junjie Liu ORCID, Christian Frankenberg ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractAn increase in the seasonal cycle amplitude (SCA) of atmospheric CO2 since the 1960s has been observed in the Northern Hemisphere (NH). However, the underlying dominant drivers are still debated. The peak season CO2 uptake by vegetation is critical in shaping the CO2 seasonality. Using satellite‐upscaled gross primary production (GPP) from FLUXCOM and near‐infrared reflectance of vegetation (NIRV), we demonstrate that peak GPP has increased across the NH over the last two decades. We relate this productivity increase to changes in the CO2 SCA using an atmospheric transport model. The increased photosynthesis has strongly contributed to CO2 SCA trends, but with substantial latitudinal and longitudinal variations. Despite a general increase in the CO2 SCA, there are distinct regional differences. These differences are mainly controlled by regional biosphere carbon fluxes, with the remainder explained by non‐biome factors, including large‐scale atmospheric transport, changes in fossil fuel combustion, biomass burning and oceanic fluxes. Using the global flask and in situ CO2 measurement sites, we find that SCA trends at high latitude are mainly driven by increasingly productive natural ecosystems, whereas mid latitude sites around the Midwest United States are mainly impacted by intensified agriculture and atmospheric transport. Averaging across the 15 long‐term surface sites, forests contribute 26% (7%) to the SCA trends, while crops contribute 17% (24%) and the combined shrubland, grassland and wetland regions contribute 23% (37%) for simulations driven by FLUXCOM (NIRv) ecosystem fluxes. Our findings demonstrate that satellite inferred trends of ecosystem fluxes can capture the observed CO2 SCA trend.