Published in

EMBO Press, The EMBO Journal, 6(42), 2023

DOI: 10.15252/embj.2022112863

Links

Tools

Export citation

Search in Google Scholar

Phase separation of Hippo signalling complexes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Hippo pathway was originally discovered to control tissue growth inDrosophilaand includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs‐Expanded (Crb‐Ex) and/or Merlin‐Kibra (Mer‐Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6‐hexanediol treatment. Overexpressing Ex or Kib induces formation of micron‐scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low‐complexity domains and purified Hpo‐Sav complexes undergo phase separationin vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated “signalosomes” induced by clustering of upstream pathway components.