Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-33293-x

Links

Tools

Export citation

Search in Google Scholar

Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWarming of northern high latitude regions (NHL, > 50 °N) has increased both photosynthesis and respiration which results in considerable uncertainty regarding the net carbon dioxide (CO2) balance of NHL ecosystems. Using estimates constrained from atmospheric observations from 1980 to 2017, we find that the increasing trends of net CO2uptake in the early-growing season are of similar magnitude across the tree cover gradient in the NHL. However, the trend of respiratory CO2loss during late-growing season increases significantly with increasing tree cover, offsetting a larger fraction of photosynthetic CO2uptake, and thus resulting in a slower rate of increasing annual net CO2uptake in areas with higher tree cover, especially in central and southern boreal forest regions. The magnitude of this seasonal compensation effect explains the difference in net CO2uptake trends along the NHL vegetation- permafrost gradient. Such seasonal compensation dynamics are not captured by dynamic global vegetation models, which simulate weaker respiration control on carbon exchange during the late-growing season, and thus calls into question projections of increasing net CO2uptake as high latitude ecosystems respond to warming climate conditions.