Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Journal of Cerebral Blood Flow and Metabolism, 2023

DOI: 10.1177/0271678x231216767

Links

Tools

Export citation

Search in Google Scholar

Proteomic analysis of jugular venous blood in acute large vessel occlusion stroke with futile recanalization

Journal article published in 2023 by Xiao-Yan Lan ORCID, Di Li, Yu Cui ORCID, Thanh N. Nguyen ORCID, Shen Li ORCID, Hui-Sheng Chen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Futile recanalization (FR) after endovascular treatment (EVT) remains a significant challenge for acute ischemic stroke (AIS) with large vessel occlusion (LVO). The pathogenesis of FR has not been well elucidated. We prospectively enrolled anterior circulation LVO-AIS patients who achieved successful recanalization after EVT. The jugular venous blood ipsilateral to stroke was collected before and immediately after recanalization. Plasma proteomic analysis based on liquid chromatography-mass spectrometry was performed using data-independent acquisition method. Differentially expressed proteins (DEPs) among patients with or without FR in the whole or propensity score matching (PSM) cohorts were screened according to the absolute value of fold change ≥1.5 and P value <0.05. We identified 104 and 34 DEPs between patients with or without FR in the whole cohort and PSM cohort, respectively. Bioinformatic analysis indicated that the identified proteins were primarily related to specific biological processes including immune response, complement activation, oxidative stress, lipid metabolism, protein ubiquitylation as well as autophagy, suggesting that these may be mechanisms in FR pathogenesis. Collectively, we discovered proteins that may be potential research targets for FR. The combination of proteomic and bioinformatic analysis could provide a better understanding of the pathogenesis of FR in a comprehensive manner.