Published in

European Geosciences Union, Atmospheric Measurement Techniques, 17(16), p. 3973-3986, 2023

DOI: 10.5194/amt-16-3973-2023

Links

Tools

Export citation

Search in Google Scholar

Mapping the performance of a versatile water-based condensation particle counter (vWCPC) with numerical simulation and experimental study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Accurate airborne aerosol instrumentation is required to determine the spatial distribution of ambient aerosol particles, particularly when dealing with the complex vertical profiles and horizontal variations of atmospheric aerosols. A versatile water-based condensation particle counter (vWCPC) has been developed to provide aerosol concentration measurements under various environments with the advantage of reducing the health and safety concerns associated with using butanol or other chemicals as the working fluid. However, the airborne deployment of vWCPCs is relatively limited due to the lack of characterization of vWCPC performance at reduced pressures. Given the complex combinations of operating parameters in vWCPCs, modeling studies have advantages in mapping vWCPC performance. In this work, we thoroughly investigated the performance of a laminar-flow vWCPC using COMSOL Multiphysics® simulation coupled with MATLAB™. We compared it against a modified vWCPC (vWCPC model 3789, TSI, Shoreview, MN, USA). Our simulation determined the performance of particle activation and droplet growth in the vWCPC growth tube, including the supersaturation, Dp,kel,0 (smallest size of particle that can be activated), Dp,kel,50 (particle size activated with 50 % efficiency) profile, and final growth particle size Dd under wide operating temperatures, inlet pressures P (30–101 kPa), and growth tube geometry (diameter D and initiator length Lini). The effect of inlet pressure and conditioner temperature on vWCPC 3789 performance was also examined and compared with laboratory experiments. The COMSOL simulation result showed that increasing the temperature difference (ΔT) between conditioner temperature Tcon and initiator Tini will reduce Dp,kel,0 and the cut-off size Dp,kel,50 of the vWCPC. In addition, lowering the temperature midpoint (Tmid=Tcon+Tini2) increases the supersaturation and slightly decreases the Dp,kel. The droplet size at the end of the growth tube is not significantly dependent on raising or lowering the temperature midpoint but significantly decreases at reduced inlet pressure, which indirectly alters the vWCPC empirical cut-off size. Our study shows that the current simulated growth tube geometry (D=6.3 mm and Lini=30 mm) is an optimized choice for current vWCPC flow and temperature settings. The current simulation can more realistically represent the Dp,kel for 7 nm vWCPC and also achieved good agreement with the 2 nm setting. Using the new simulation approach, we provide an optimized operation setting for the 7 nm setting. This study will guide further vWCPC performance optimization for applications requiring precise particle detection and atmospheric aerosol monitoring.