Published in

Oxford University Press, Botanical Journal of the Linnean Society, 2(200), p. 143-164, 2022

DOI: 10.1093/botlinnean/boac032

Links

Tools

Export citation

Search in Google Scholar

Asteraceae as a model system for evolutionary studies: from fossils to genomes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract With c. 24 700 species (10% of all flowering plants), Asteraceae are one of the largest and most phenotypically diverse angiosperm families, with considerable economic and ecological importance. Asteraceae are distributed worldwide, from nearly polar latitudes all the way to the tropics, and occur across a diverse range of habitats from extreme deserts to swamps and from lowland rainforests to alpine tundra. Altogether, these characteristics make this family an outstanding model system to address a broad range of eco-evolutionary questions. In this review, we summarize recent progress in our understanding of Asteraceae on the basis of joint efforts by specialists in the fields of palaeobotany, cytogenetics, comparative genomics and phylogenomics. We will highlight how these developments are opening up new possibilities for integrating fields and better comprehending evolution beyond Asteraceae.