Published in

MDPI, Pharmaceutics, 4(15), p. 1209, 2023

DOI: 10.3390/pharmaceutics15041209

Links

Tools

Export citation

Search in Google Scholar

Mixed Edge Activators in Ibuprofen-Loaded Transfersomes: An Innovative Optimization Strategy Using Box–Behnken Factorial Design

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Transfersomes have been highlighted as an interesting nanotechnology-based approach to facilitate the skin delivery of bioactive compounds. Nevertheless, the properties of these nanosystems still need to be improved to enable knowledge transfer to the pharmaceutical industry and the development of more efficacious topical medicines. Quality-by-design strategies, such as Box–Behnken factorial design (BBD), are in line with the current need to use sustainable processes to develop new formulations. Thus, this work aimed at optimizing the physicochemical properties of transfersomes for cutaneous applications, by applying a BBD strategy to incorporate mixed edge activators with opposing hydrophilic–lipophilic balance (HLB). Tween® 80 and Span® 80 were used as edge activators and ibuprofen sodium salt (IBU) was selected as the model drug. After the initial screening of the IBU solubility in aqueous media, a BBD protocol was implemented, and the optimized formulation displayed appropriate physicochemical properties for skin delivery. By comparing the optimized transfersomes to equivalent liposomes, the incorporation of mixed edge activators was found to be beneficial to upgrade the storage stability of the nanosystems. Furthermore, their cytocompatibility was shown by cell viability studies using 3D HaCaT cultures. Altogether, the data herein bode well for future advances in the use of mixed edge activators in transfersomes for the management of skin conditions.