Published in

MDPI, Metabolites, 11(11), p. 733, 2021

DOI: 10.3390/metabo11110733

Links

Tools

Export citation

Search in Google Scholar

Gut Microbiota Metabolism of Bile Acids Could Contribute to the Bariatric Surgery Improvements in Extreme Obesity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bariatric surgery is the only procedure to obtain and maintain weight loss in the long term, although the mechanisms driving these benefits are not completely understood. In the last years, gut microbiota has emerged as one of the drivers through its metabolites, especially secondary bile acids. In the current study, we have compared the gut microbiota and the bile acid pool, as well as anthropometric and biochemical parameters, of patient with morbid obesity who underwent bariatric surgery by two different techniques, namely Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). Gut microbiota populations differed after the respective procedures, particularly with respect to the Enterobacteriaceae family. Both techniques resulted in changes in the bile acids pool, but RYGB was the procedure which suffered the greatest changes, with a reduction in most of their levels. Blautia and Veillonella were the two genera that more relationships showed with secondary bile acids, indicating a possible role in their formation and inhibition, respectively. Correlations with the anthropometric and biochemical variables showed that secondary bile acids could have a role in the amelioration of the glucose and HDL-cholesterol levels. Thus, we have observed a possible relationship between the interaction of the bile acids pool metabolized by the gut microbiota in the metabolic improvements obtained by bariatric surgery in the frame of morbid obesity, deserving further investigation in greater cohorts to decipher the role of each bile acid in the homeostasis of the host for their possible use in the development of microbiota-based therapeutics, such as new drugs, postbiotics or probiotics.