Published in

MDPI, Journal of Fungi, 1(8), p. 78, 2022

DOI: 10.3390/jof8010078

Links

Tools

Export citation

Search in Google Scholar

Saccharomyces cerevisiae Cells Lacking the Zinc Vacuolar Transporter Zrt3 Display Improved Ethanol Productivity in Lignocellulosic Hydrolysates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Yeast-based bioethanol production from lignocellulosic hydrolysates (LH) is an attractive and sustainable alternative for biofuel production. However, the presence of acetic acid (AA) in LH is still a major problem. Indeed, above certain concentrations, AA inhibits yeast fermentation and triggers a regulated cell death (RCD) process mediated by the mitochondria and vacuole. Understanding the mechanisms involved in AA-induced RCD (AA-RCD) may thus help select robust fermentative yeast strains, providing novel insights to improve lignocellulosic ethanol (LE) production. Herein, we hypothesized that zinc vacuolar transporters are involved in vacuole-mediated AA-RCD, since zinc enhances ethanol production and zinc-dependent catalase and superoxide dismutase protect from AA-RCD. In this work, zinc limitation sensitized wild-type cells to AA-RCD, while zinc supplementation resulted in a small protective effect. Cells lacking the vacuolar zinc transporter Zrt3 were highly resistant to AA-RCD, exhibiting reduced vacuolar dysfunction. Moreover, zrt3Δ cells displayed higher ethanol productivity than their wild-type counterparts, both when cultivated in rich medium with AA (0.29 g L−1 h−1 versus 0.11 g L−1 h−1) and in an LH (0.73 g L−1 h−1 versus 0.55 g L−1 h−1). Overall, the deletion of ZRT3 emerges as a promising strategy to increase strain robustness in LE industrial production.