Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 1(932), p. 58, 2022

DOI: 10.3847/1538-4357/ac67dc

Links

Tools

Export citation

Search in Google Scholar

The Circumstellar Environments of Double-peaked, Calcium-strong Transients 2021gno and 2021inl

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission (L x = 5 × 1041 erg s−1) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 1014 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10−3 M and density n = (1−4) × 1010 cm−3. Radio nondetections indicate a low-density environment at larger radii (r > 1016 cm) and mass-loss rate of M ̇ < 10 − 4 M yr−1. SCE modeling of both primary light-curve peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M and radius R e = 30−230 R . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers.