Published in

American Astronomical Society, Astronomical Journal, 3(164), p. 96, 2022

DOI: 10.3847/1538-3881/ac7cea

Links

Tools

Export citation

Search in Google Scholar

TOI-1452 b: SPIRou and TESS Reveal a Super-Earth in a Temperate Orbit Transiting an M4 Dwarf

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Exploring the properties of exoplanets near or inside the radius valley provides insight on the transition from the rocky super-Earths to the larger, hydrogen-rich atmosphere mini-Neptunes. Here, we report the discovery of TOI-1452b, a transiting super-Earth (R p = 1.67 ± 0.07 R ) in an 11.1 day temperate orbit (T eq = 326 ± 7 K) around the primary member (H = 10.0, T eff = 3185 ± 50 K) of a nearby visual-binary M dwarf. The transits were first detected by the Transiting Exoplanet Survey Satellite, then successfully isolated between the two 3.″2 companions with ground-based photometry from the Observatoire du Mont-Mégantic and MuSCAT3. The planetary nature of TOI-1452b was established through high-precision velocimetry with the near-infrared SPIRou spectropolarimeter as part of the ongoing SPIRou Legacy Survey. The measured planetary mass (4.8 ± 1.3 M ) and inferred bulk density ( 5.6 − 1.6 + 1.8 g cm−3) is suggestive of a rocky core surrounded by a volatile-rich envelope. More quantitatively, the mass and radius of TOI-1452b, combined with the stellar abundance of refractory elements (Fe, Mg, and Si) measured by SPIRou, is consistent with a core-mass fraction of 18% ± 6% and a water-mass fraction of 22 − 13 + 21 %. The water world candidate TOI-1452b is a prime target for future atmospheric characterization with JWST, featuring a transmission spectroscopy metric similar to other well-known temperate small planets such as LHS 1140b and K2-18 b. The system is located near Webb’s northern continuous viewing zone, implying that is can be followed at almost any moment of the year.