Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(513), p. 3510-3525, 2022

DOI: 10.1093/mnras/stac1067

Links

Tools

Export citation

Search in Google Scholar

The VANDELS survey: a measurement of the average Lyman-continuum escape fraction of star-forming galaxies at z = 3.5

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present a study designed to measure the average Lyman-continuum escape fraction (〈fesc〉) of star-forming galaxies at z ≃ 3.5. We assemble a sample of 148 galaxies from the VANDELS spectroscopic survey at 3.35 ≤ zspec ≤ 3.95, selected to minimize line-of-sight contamination of their photometry. For this sample, we use ultra-deep, ground-based, U-band imaging and Hubble Space Telescope V-band imaging to robustly measure the distribution of $\mathcal {R_{\rm obs}}\, =(L_{\rm LyC}/L_{\rm UV})_{\rm obs}$. We then model the $\mathcal {R_{\rm obs}}$ distribution as a function of 〈fesc〉, carefully accounting for attenuation by dust, the intergalactic medium and the circumgalactic medium. A maximum likelihood fit to the $\mathcal {R_{\rm obs}}$ distribution returns a best-fitting value of $〈 f_{\rm esc}〉 =0.07^{+0.02}_{-0.02}$, a result confirmed using an alternative Bayesian inference technique (both techniques exclude 〈fesc〉 = 0.0 at >3σ). By splitting our sample in two, we find evidence that 〈fesc〉 is positively correlated with Ly α equivalent width (Wλ(Ly α)), with high and low Wλ(Lyα) subsamples returning values of $〈 f_{\rm esc}〉 =0.12^{+0.06}_{-0.04}$ and $〈 f_{\rm esc} 〉 =0.02^{+0.02}_{-0.01}$, respectively. In contrast, we find evidence that 〈fesc〉 is anticorrelated with intrinsic UV luminosity and UV dust attenuation; with low UV luminosity and dust attenuation subsamples both returning best fits in the range 0.10 ≤ 〈fesc〉 ≤ 0.22. We do not find a clear correlation between fesc and galaxy stellar mass, suggesting stellar mass is not a primary indicator of fesc. Although larger samples are needed to further explore these trends, our results suggest that it is entirely plausible that the low dust, low-metallicity galaxies found at z ≥ 6 will display the 〈fesc〉 ≥ 0.1 required to drive reionization.