Published in

American Association for the Advancement of Science, Science Signaling, 814(16), 2023

DOI: 10.1126/scisignal.adi8645

Links

Tools

Export citation

Search in Google Scholar

Palmitoylated Sept8-204 modulates learning and anxiety by regulating filopodia arborization and actin dynamics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Septin proteins are involved in diverse physiological functions, including the formation of specialized cytoskeletal structures. Septin 8 (Sept8) is implicated in spine morphogenesis and dendritic branching through palmitoylation. We explored the role and regulation of a Sept8 variant in human neural-like cells and in the mouse brain. We identified Sept8-204 as a brain-specific variant of Sept8 that was abundant in neurons and modified by palmitoylation, specifically at Cys 469 , Cys 470 , and Cys 472 . Sept8-204 palmitoylation was mediated by the palmitoyltransferase ZDHHC7 and was removed by the depalmitoylase PPT1. Palmitoylation of Sept8-204 bound to F-actin and induced cytoskeletal dynamics to promote the outgrowth of filopodia in N2a cells and the arborization of neurites in hippocampal neurons. In contrast, a Sept8-204 variant that could not be palmitoylated because of mutation of all three Cys residues (Sept8-204-3CA) lost its ability to bind F-actin, and expression of this mutant did not promote morphological changes. Genetic deletion of Sept8 , Sept8 -204, or Zdhhc7 caused deficits in learning and memory and promoted anxiety-like behaviors in mice. Our findings provide greater insight into the regulation of Sept8-204 by palmitoylation and its role in neuronal morphology and function in relation to cognition.