Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Allergy, 7(78), p. 1742-1757, 2023

DOI: 10.1111/all.15667

Links

Tools

Export citation

Search in Google Scholar

EAACI guidelines on environmental science in allergic diseases and asthma – Leveraging artificial intelligence and machine learning to develop a causality model in exposomics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAllergic diseases and asthma are intrinsically linked to the environment we live in and to patterns of exposure. The integrated approach to understanding the effects of exposures on the immune system includes the ongoing collection of large‐scale and complex data. This requires sophisticated methods to take full advantage of what this data can offer. Here we discuss the progress and further promise of applying artificial intelligence and machine‐learning approaches to help unlock the power of complex environmental data sets toward providing causality models of exposure and intervention. We discuss a range of relevant machine‐learning paradigms and models including the way such models are trained and validated together with examples of machine learning applied to allergic disease in the context of specific environmental exposures as well as attempts to tie these environmental data streams to the full representative exposome. We also discuss the promise of artificial intelligence in personalized medicine and the methodological approaches to healthcare with the final AI to improve public health.