Published in

SAGE Publications, Journal of Dental Research, 2023

DOI: 10.1177/00220345231203562

Links

Tools

Export citation

Search in Google Scholar

Systemic Metabolic Signatures of Oral Diseases

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Systemic metabolic signatures of oral diseases have been rarely investigated, and prospective studies do not exist. We analyzed whether signs of current or past infectious/inflammatory oral diseases are associated with circulating metabolites. Two study populations were included: the population-based Health-2000 ( n = 6,229) and Parogene ( n = 452), a cohort of patients with an indication to coronary angiography. Health-2000 participants ( n = 4,116) provided follow-up serum samples 11 y after the baseline. Serum concentrations of 157 metabolites were determined with a nuclear magnetic resonance spectroscopy-based method. The associations between oral parameters and metabolite concentrations were analyzed using linear regression models adjusted for age, sex, number of teeth, smoking, presence of diabetes, and education (in Health-2000 only). The number of decayed teeth presented positive associations with low-density lipoprotein diameter and the concentrations of pyruvate and citrate. Negative associations were found between caries and the unsaturation degree of fatty acids (FA) and relative proportions of docosahexaenoic and omega-3 FAs. The number of root canal fillings was positively associated with very low-density lipoprotein parameters, such as diameter, cholesterol, triglycerides, and number of particles. Deepened periodontal pockets were positively associated with concentrations of cholesterol, triglycerides, pyruvate, leucine, valine, phenylalanine, and glycoprotein acetyls and negatively associated with high-density lipoprotein (HDL) diameter, FA unsaturation degree, and relative proportions of omega-6 and polyunsaturated FAs. Bleeding on probing (BOP) was associated with increased concentrations of triglycerides and glycoprotein acetyls, as well as decreased proportions of omega-3 and omega-6 FAs. Caries at baseline predicted alterations in apolipoprotein B–containing lipoproteins and HDL-related metabolites in the follow-up, and both caries and BOP were associated with changes in HDL-related metabolites and omega-3 FAs in the follow-up. Signs of current or past infectious/inflammatory oral diseases, especially periodontitis, were associated with metabolic profiles typical for inflammation. Oral diseases may represent a modifiable risk factor for systemic chronic inflammation and thus cardiometabolic disorders.