Published in

Oxford University Press, Cerebral Cortex, 1(33), p. 235-245, 2022

DOI: 10.1093/cercor/bhac064

Links

Tools

Export citation

Search in Google Scholar

The effect of external stimulation on functional networks in the aging healthy human brain

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy could serve to identify neurophysiological biomarkers differentiating between age groups through an exhaustive exploration of the global effect of all possible local perturbations. Here, we used a resting-state fMRI dataset divided into middle-aged (N =310, <65 years) and older adults (N =310, $≥ $65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space. We showed that the older group exhibited a reduced capability to access a metastable substate that overlaps with the rich club. Then, we fitted the PMS to a whole-brain model and applied in silico stimulations in each node to force transitions from the brain states of the older- to the middle-aged group. We found that the precuneus was the best stimulation target. Overall, these findings could have important implications for designing neurostimulation interventions for reversing the effects of aging on whole-brain dynamics.