Published in

American Academy of Neurology (AAN), Neurology, 21(97), p. e2079-e2087, 2021

DOI: 10.1212/wnl.0000000000012855

Links

Tools

Export citation

Search in Google Scholar

Association of CT-Based Hypoperfusion Index With Ischemic Core Enlargement in Patients With Medium and Large Vessel Stroke

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and Objectives The rate of infarct core progression in patients with acute ischemic stroke is variable and affects outcome of reperfusion therapy. We evaluated the hypoperfusion index (HI) to estimate the initial rate of core progression in patients with medium vessel occlusion (MeVO) compared to large vessel occlusion (LVO) stroke and within a larger time frame since stroke onset. Methods Core progression was assessed in 106 patients with acute stroke and CT perfusion. Using reperfusion trial core time criteria, fast progressors had core >70 mL within 6 hours of stroke onset and slow progressors had core ≤70 mL, mismatch ≥15 mL, and mismatch to core ratio ≥1.8 within 6 to 24 hours. The relationship between HI and infarct core progression (core/time) was examined using receiver operating characteristics to determine optimal HI cutoff. The HI cutoff was then tested in the overall cohort, compared between MeVO and LVO, and evaluated in patients up to 24 hours from stroke onset to differentiate fast from slow rate of core progression. HI threshold was assessed in a second independent cohort of 110 patients with acute ischemic stroke. Results In 106 patients with acute stroke, 6.6% were fast progressors, 27.4% were slow progressors, and 66% were not classified as fast or slow progressor by reperfusion trial core time criteria. HI >0.5 was associated with fast progression and able to distinguish fast from slow progressors (area under the curve [AUC] 0.94; 95% confidence interval [CI] 0.80–0.99). In MeVO (n = 26) HI >0.5 had a core progression of 0.30 mL/min compared to 0.03 mL/min for HI ≤0.5 (p < 0.001). In LVO (n = 80), HI >0.5 had a core progression of 0.26 mL/min compared to 0.02 mL/min for HI ≤0.5 (p < 0.001). In patients not classified as fast or slow progressor by reperfusion trial criteria, those with HI >0.5 had progression rate of 0.21 mL/min compared to 0.03 mL/min for those with HI ≤0.5 (p < 0.001). Validation in a second cohort of patients with acute ischemic stroke (n = 110; MeVO = 42, LVO = 68) yielded similar results for HI >0.5 to distinguish fast and slow core progression with an AUC of 0.84 (95% CI 0.72–0.97). Discussion HI can differentiate fast from slow core progression in MeVO and LVO within the first 24 hours of acute ischemic stroke. Consideration of core progression rate at time of stroke evaluation may have implications in the selection of patients with MeVO and LVO stroke for reperfusion therapy that warrant further study.