Published in

Wiley, Journal of Biogeography, 12(49), p. 2269-2280, 2022

DOI: 10.1111/jbi.14508

Links

Tools

Export citation

Search in Google Scholar

Changes in the foliar fungal community between oak leaf flushes along a latitudinal gradient in Europe

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAimLeaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within‐ and among‐tree variation in foliar fungal communities.LocationA latitudinal gradient spanning c. 20 degrees in latitude in Europe.TaxaThe foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur.MethodsWe examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding.ResultsSpecies composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude.ConclusionsChanges in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%–22% of the small‐ and large‐scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space‐for‐time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.