Published in

American Association for Cancer Research, Cancer Research, 7_Supplement(83), p. 2366-2366, 2023

DOI: 10.1158/1538-7445.am2023-2366

Links

Tools

Export citation

Search in Google Scholar

Abstract 2366: Myeloma-derived circulating extracellular vesicles affect human stromal cell behaviour and promote tumor progression: A multi-omic approach

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background: We have shown that human stromal cells (HS5) treated with small extracellular vesicles (EV) derived from plasma of myeloma (MM) patients (MM-EV) promoted adhesion of human MM cell lines (HMCL), with preliminary proteomic profiling of MM- vs healthy donors HD-EV revealing enrichment of factors implicated in cell migration and adhesion. Aims: 1) Demonstrate that MM-EV induce the formation of a tumour microenvironment (TME) favouring MM progression; 2) identify the protein content of MM-EV promoting this; 3) discover signaling drivers of EV-mediated functional remodelling of HS5 towards a pre-metastatic phenotype. Methods: EV were enriched from 1mL plasma using a commercial kit. We performed: proteomic profiling of EV [x10 HD, x8 MM, x4 asymptomatic MM, x10 premalignant stage MGUS]; phosphoproteomic profiling and gene expression analysis by RNA sequencing of HS5 cells pre-treated with MM- vs HD/MGUS-EV; functional studies (co-culture HS5:HMCL). Results: HS5 cells treated with MM-EV induced HMCL proliferation (p =.0026) and drug resistance (p =.0013) to anti-MM drugs (proteasome inhibitors) when compared to untreated HS5-cells.412 proteins were quantified by proteomic profiling of EV with 8/13 corresponding to universal cancer EV markers (Hoshino et al, Cell 2020). Gene ontology analysis of identified proteins (G:Profiler; p <.05) revealed enrichment for cellular component terms such as “extracellular vesicles/exosomes” and for biological processes including “cell communication”, “endocytosis”. Comparative analysis between our dataset and publicly available datasets revealed EV-markers with potential discriminatory specificity for MM. Comparative analysis revealed 40 proteins differentially regulated between HD- and MM-EV (p <.05; log2 fold change ≥2). A specific protein signature was found in ≥30% of MM-EV vs ≤30% HD-EV. A specific protein signature was also identified in ≥30% of MGUS-EV vs ≤30% HD/MM/SMM-EV. These proteins were not found in human whole plasma (Lehallier et al, Nat Med 2019) or solid tumors-EV (Hoshino et al, Cell 2020; Vinik et al, Science Advances 2020).120 phosphosites were differentially expressed between HS5 pre-treated with MM-EV vs HD-EV (>1.5-fold change, p<.05). Among the differentially expressed proteins were kinases, phosphatases, translation and transcription regulators. 624 gene terms were differentially expressed between HS5 pre-treated with MM- vs HD-EV (GSEA, FDR < 0.05), including epidermal growth factor (EGF), tumor necrosis factor alpha (TNFA), epithelial to mesenchymal transition (EMT) signaling. Conclusion: In this first of its kind studies in MM we show that MM-EV may play a key role in disease progression by re-programming the TME. Ongoing studies will indicate: the value of MM-EV as biomarkers; whether targeting interactions MM-EV:HS5 could enforce current therapeutic strategies. Citation Format: Antonia Reale, Rong Xu, Irena Carmichael, Haoyun Fang, Jaynish S Sha, Tiffany Khong, Nicholas Bingham, Malarmathy Ramachandran, Maoshan Chen, David W Greening, Andrew Spencer. Myeloma-derived circulating extracellular vesicles affect human stromal cell behaviour and promote tumor progression: A multi-omic approach [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 2366.