Published in

MDPI, Antibiotics, 6(12), p. 1039, 2023

DOI: 10.3390/antibiotics12061039

Links

Tools

Export citation

Search in Google Scholar

Genomic Characterization of Aeromonas veronii Provides Insights into Taxonomic Assignment and Reveals Widespread Virulence and Resistance Genes throughout the World

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aeromonas veronii is a Gram-negative bacterial species that causes disease in fish and is nowadays increasingly recurrent in enteric infections of humans. This study was performed to characterize newly sequenced isolates by comparing them with complete genomes deposited at the NCBI (National Center for Biotechnology Information). Nine isolates from fish, environments, and humans from the São Francisco Valley (Petrolina, Pernambuco, Brazil) were sequenced and compared with complete genomes available in public databases to gain insight into taxonomic assignment and to better understand virulence and resistance profiles of this species within the One Health context. One local genome and four NCBI genomes were misidentified as A. veronii. A total of 239 virulence genes were identified in the local genomes, with most encoding adhesion, motility, and secretion systems. In total, 60 genes involved with resistance to 22 classes of antibiotics were identified in the genomes, including mcr-7 and cphA. The results suggest that the use of methods such as ANI is essential to avoid misclassification of the genomes. The virulence content of A. veronii from local isolates is similar to those complete genomes deposited at the NCBI. Genes encoding colistin resistance are widespread in the species, requiring greater attention for surveillance systems.