Published in

MDPI, Diagnostics, 11(12), p. 2785, 2022

DOI: 10.3390/diagnostics12112785

Links

Tools

Export citation

Search in Google Scholar

Noninvasive Prediction of Advanced Fibrosis in Pediatric Liver Disease—Discriminatory Performance of 2D Shear Wave Elastography, Transient Elastography and Magnetic Resonance Elastography in Comparison to Histopathology

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Elastography can be measured with different imaging techniques and is increasingly used for noninvasive assessment of hepatic fibrosis. Little is known about the performance, and interrelation of different elastographic techniques, in prediction of hepatic fibrosis in pediatric liver disease. Objectives: We aimed to determine the discriminatory value for advanced fibrosis (Metavir F3-4) and evaluate the applicability of 2D shear wave ultrasound elastography (USe), Transient Elastography (TE) and Magnetic Resonance elastography (MRe) in pediatric liver disease. Methods: In patients with pediatric liver disease aged 0–19 years, USe, TE and MRe were compared with histopathological fibrosis stage. Multivariate logistic regression models for advanced fibrosis were considered. Discriminative performance was assessed by the area under the receiver operating characteristic curve and the Brier Score. Primary analyses included complete cases. Multiple imputation was used as sensitivity analysis. Results: In 93 histologically evaluated patients USe, TE and MRe were performed 89, 93 and 61 times respectively. With increased liver stiffness values, significantly increased odds for presenting F3-4 were seen in individual models for ALT < 470 U/L, whereas the effect for ALT > 470 U/L was non-significant. Area under the curve and Brier Score for discrimination of advanced fibrosis were 0.798 (0.661–0.935) and 0.115 (0.064–0.166); 0.862 (0.758–0.966) and 0.118 (0.065–0.171); 0.896 (0.798–0.994) and 0.098 (0.049–0.148) for USe, TE and MRe respectively. No significant increase in discriminatory ability was found when combining elastographic modalities. Conclusions: In pediatric liver disease, USe, TE and MRe had a good discriminatory ability for assessment of advanced liver fibrosis, although TE and MRe performed best. In most children with pediatric liver disease, TE is a reliable and easily applicable measure.