Published in

American Heart Association, Stroke, 9(52), p. 2866-2873, 2021

DOI: 10.1161/strokeaha.120.031102

Links

Tools

Export citation

Search in Google Scholar

Digital Peripheral Arterial Tonometry and Cardiovascular Disease Events: The Framingham Heart Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and Purpose: Novel noninvasive measures of vascular function are emerging as subclinical markers for cardiovascular disease (CVD) and may be useful to predict CVD events. The purpose of our prospective study was to assess associations between digital peripheral arterial tonometry (PAT) measures and first-onset major CVD events in a sample of FHS (Framingham Heart Study) participants. Methods: Using a fingertip PAT device, we assessed pulse amplitude in Framingham Offspring and Third Generation participants (n=3865; mean age, 55±14 years; 52% women) at baseline and in 30-second intervals for 4 minutes during reactive hyperemia. The PAT ratio (relative hyperemia index) was calculated as the post-to-pre occlusion pulse signal ratio in the occluded arm, relative to the same ratio in the control (nonoccluded) arm, and corrected for baseline vascular tone. Baseline pulse amplitude and PAT ratio during hyperemia are measures of pressure pulsatility and microvascular function in the finger, respectively. We used Cox proportional hazards regression to relate PAT measures in the fingertip to incident CVD events. Results: During follow-up (median, 9.2 years; range, 0.04–10.0 years), 270 participants (7%) experienced new-onset CVD events (n=270). In multivariable models adjusted for cardiovascular risk factors, baseline pulse amplitude (hazard ratio [HR] per 1 SD, 1.04 [95% CI, 0.90–1.21]; P =0.57) and PAT ratio (HR, 0.95 [95% CI, 0.84–1.08]; P =0.43) were not significantly related to incident composite CVD events, including myocardial infarction or heart failure. However, higher PAT ratio (HR, 0.76 [95% CI, 0.61–0.94]; P =0.013), but not baseline pulse amplitude (HR, 1.15 [95% CI, 0.89–1.49]; P =0.29), was related to lower risk for incident stroke. In a sensitivity analysis by stroke subtype, higher PAT ratio was related to lower risk of incident ischemic stroke events (HR, 0.68 [95% CI, 0.53–0.86]; P =0.001). Conclusions: Novel digital PAT measures may represent a marker of stroke risk in the community.