Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6625(378), p. 1218-1221, 2022

DOI: 10.1126/science.add1644

Links

Tools

Export citation

Search in Google Scholar

Dynamical fractal and anomalous noise in a clean magnetic crystal

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fractals—objects with noninteger dimensions—occur in manifold settings and length scales in nature. In this work, we identify an emergent dynamical fractal in a disorder-free, stoichiometric, and three-dimensional magnetic crystal in thermodynamic equilibrium. The phenomenon is born from constraints on the dynamics of the magnetic monopole excitations in spin ice, which restrict them to move on the fractal. This observation explains the anomalous exponent found in magnetic noise experiments in the spin ice compound Dy 2 Ti 2 O 7 , and it resolves a long-standing puzzle about its rapidly diverging relaxation time. The capacity of spin ice to exhibit such notable phenomena suggests that there will be further unexpected discoveries in the cooperative dynamics of even simple topological many-body systems.