Published in

Gasification [Working Title], 2021

DOI: 10.5772/intechopen.96157

Links

Tools

Export citation

Search in Google Scholar

Solid Waste Gasification: Comparison of Single- and Multi-Staged Reactors

Book chapter published in 2021 by Xianhui Zhao, Kai Li, Meghan E. Lamm, Serdar Celik, Lin Wei, Soydan Ozcan
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Interest in converting waste into renewable energy has increased recently due to concerns about sustainability and climate change. This solid waste is mainly derived from municipal solid waste (MSW), biomass residue, plastic waste, and their mixtures. Gasification is one commonly applied technology that can convert solid waste into usable gases, including H2, CO, CH4, and CO2. Single- and multi-staged reactors have been utilized for solid waste gasification. Comparison in reactor dimensions, operating factors (e.g., gasification agent, temperature, and feed composition), performance (e.g., syngas yield and selectivity), advantages, and disadvantages are discussed and summarized. Additionally, discussion will include economic and advanced catalysts which have been developed for use in solid waste gasification. The multi-staged reactor can not only be applied for gasification, but also for pyrolysis and torrefaction.