Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Electronic Materials, 10(8), 2022

DOI: 10.1002/aelm.202200457

Links

Tools

Export citation

Search in Google Scholar

Raman Spectroscopy of Few‐Layers TaS<sub>2</sub> and Mo‐Doped TaS<sub>2</sub> with Enhanced Superconductivity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe use of simple, fast, and economic experimental tools to characterize low‐dimensional materials is an important step in the process of democratizing their use. Raman spectroscopy has arisen as a way of indirectly determining the thickness of nanolayers of transition metal dichalcogenides (TMDs), avoiding the use of more expensive tools such as atomic force microscopy, and it is therefore a widely used technique in the study of semiconducting TMDs. However, the study of many metallic TMDs in the limit of few atomic layers is still behind when compared to their semiconducting counterparts, partly due to the lack of similar alternative characterization studies. In this work the characterization of the Raman spectrum, specifically of the E‐ and A1g‐modes, of mechanically exfoliated Ta1−xMoxS2, a metallic TMD which exhibits charge density wave (CDW) formation and superconductivity, is presented. The clear identification of contributions coming from the SiO2/Si substrate allowed the isolation of the individual E‐ and A1g‐modes of the samples and, for the first time, the observation of a clear evolution of their Raman shifts as a function of sample thickness. This provides a way of indirectly determining sample thickness in the limit of few atomic layers in Ta1−xMoxS2.