Published in

Springer Nature [academic journals on nature.com], Cell Discovery, 1(9), 2023

DOI: 10.1038/s41421-023-00591-7

Links

Tools

Export citation

Search in Google Scholar

Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIndolent (lepidic) and aggressive (micropapillary, solid, and poorly differentiated acinar) histologic subtypes often coexist within a tumor tissue of lung adenocarcinoma (LUAD), but the molecular features associated with different subtypes and their transitions remain elusive. Here, we combine spatial transcriptomics and multiplex immunohistochemistry to elucidate molecular characteristics and cellular plasticity of distinct histologic subtypes of LUAD. We delineate transcriptional reprogramming and dynamic cell signaling that determine subtype progression, especially hypoxia-induced regulatory network. Different histologic subtypes exhibit heterogeneity in dedifferentiation states. Additionally, our results show that macrophages are the most abundant cell type in LUAD, and identify different tumor-associated macrophage subpopulations that are unique to each histologic subtype, which might contribute to an immunosuppressive microenvironment. Our results provide a systematic landscape of molecular profiles that drive LUAD subtype progression, and demonstrate potentially novel therapeutic strategies and targets for invasive lung adenocarcinoma.