Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Methods in Ecology and Evolution, 3(14), p. 806-816, 2023

DOI: 10.1111/2041-210x.14060

Links

Tools

Export citation

Search in Google Scholar

aniMotum, an R package for animal movement data: Rapid quality control, behavioural estimation and simulation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Animal tracking data are indispensable for understanding the ecology, behaviour and physiology of mobile or cryptic species. Meaningful signals in these data can be obscured by noise due to imperfect measurement technologies, requiring rigorous quality control as part of any comprehensive analysis. State–space models are powerful tools that separate signal from noise. These tools are ideal for quality control of error‐prone location data and for inferring where animals are and what they are doing when they record or transmit other information. However, these statistical models can be challenging and time‐consuming to fit to diverse animal tracking data sets. The R package aniMotum eases the tasks of conducting quality control on and inference of changes in movement from animal tracking data. This is achieved via: (1) a simple but extensible workflow that accommodates both novice and experienced users; (2) automated processes that alleviate complexity from data processing and model specification/fitting steps; (3) simple movement models coupled with a powerful numerical optimization approach for rapid and reliable model fitting. We highlight aniMotum's capabilities through three applications to real animal tracking data. Full R code for these and additional applications is included as Supporting Information, so users can gain a deeper understanding of how to use aniMotum for their own analyses.