Published in

MDPI, Insects, 9(13), p. 804, 2022

DOI: 10.3390/insects13090804

Links

Tools

Export citation

Search in Google Scholar

Fitness of the Papaya Mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), after Transferring from Solanum tuberosum to Carica papaya, Ipomoea batatas, and Alternanthera philoxeroides

Journal article published in 2022 by Hui-Yu Chuai, Meng-Zhu Shi ORCID, Jian-Yu Li ORCID, Li-Zhen Zheng ORCID, Jian-Wei Fu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae), is a polyphagous invasive pest in China. The effect that the shifting of the host plant has on the fitness of a polyphagous pest is critical to its prevalence and potential pest control. In order to assess the fitness changes of P. marginatus after transferal from potato (Solanum tuberosum (Tubiflorae: Solanaceae)) to papaya (Carica papaya (Parietales: Caricacea)), sweet potato (Ipomoea batatas (Tubiflorae: Convolvulaceae)), and alligator weed (Alternanthera philoxeroides (Centrospermae: Amaranthaceae)), the life table data of three consecutive generations were collected and analyzed using the age-stage, two-sex life table method. The results showed that when P. marginatus was transferred from S. tuberosum to papaya, a higher intrinsic rate of increase (r) and finite rate of increase (λ) were observed. Paracoccus marginatus individuals transferred to I. batatas had the significantly lower population parameters than those on C. papaya; however, the fitness recovered for those on I. batatas after two generations. Paracoccus marginatus individuals were unable to complete development on A. philoxeroides. Our results conclusively demonstrate that P. marginatus individuals can readily adapt to C. papaya and I. batatas even after host plant shifting, and are capable of causing severe damage to these hosts.